Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis

Source: UC Santa Cruz NewsCenter

Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis

By Tim Stephens

A new chip-based platform developed by researchers at UC Santa Cruz integrates nanopores and optofluidic technology with a feedback-control circuit to enable an unprecedented level of control over individual molecules and particles on a chip for high-throughput analysis.

In a paper published August 16 in Nature Communications, the researchers reported using the device to control the delivery of individual biomolecules—including ribosomes, DNA, and proteins—into a fluid-filled channel on the chip. They also showed that the device can be used to sort different types of molecules, enabling selective analysis of target molecules from a mixture. 

The capabilities of the programmable nanopore-optofluidic device point the way toward a novel research tool for high-throughput single-molecule analysis on a chip, said Holger Schmidt, the Kapany Professor of Optoelectronics at UC Santa Cruz and corresponding author of the paper.

"We can bring a single molecule into a fluidic channel where it can then be analyzed using integrated optical waveguides or other techniques," Schmidt said. "The idea is to introduce a particle or molecule, hold it in the channel for analysis, then discard the particle, and easily and rapidly repeat the process to develop robust statistics of many single-molecule experiments."

Continue reading…

Don’t Miss the next Santa Cruz Works New Tech Meetup on Sept 4 - Get Biotech

Matthew Swinnerton